Pages: [1]
  Print  
Author Topic: Image Mining  (Read 573 times)
jameshickman
Newbie
*
Posts: 2


« on: December 05, 2013, 02:02:38 PM »

I have several thousand spare parts each of which has multiple photographs taken from various angles.
I want to build a model to identify which spare part is pictured in a new photograph.

In data mining terms I want to:

Extract features from the images
Train a learner to categorize the images based on the features

If I use the global features extraction I get good results on a limited sample of training images with this process:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<process version="5.3.015">
  <context>
    <input/>
    <output/>
    <macros/>
  </context>
  <operator activated="true" class="process" compatibility="5.3.015" expanded="true" name="Process">
    <parameter key="parallelize_main_process" value="true"/>
    <process expanded="true">
      <operator activated="true" class="imageprocessing:multiple_color_image_opener" compatibility="1.4.001" expanded="true" height="60" name="MCIO" width="90" x="45" y="30">
        <list key="images">
          <parameter key="S001071" value="D:\Rotationals\S001071"/>
          <parameter key="S001079" value="D:\Rotationals\S001079"/>
          <parameter key="S001128" value="D:\Rotationals\S001128"/>
          <parameter key="S001129" value="D:\Rotationals\S001129"/>
          <parameter key="S001496" value="D:\Rotationals\S001496"/>
          <parameter key="S001527" value="D:\Rotationals\S001527"/>
          <parameter key="S001532" value="D:\Rotationals\S001532"/>
          <parameter key="S002047" value="D:\Rotationals\S002047"/>
          <parameter key="S002443" value="D:\Rotationals\S002443"/>
          <parameter key="S002518" value="D:\Rotationals\S002518"/>
        </list>
        <parameter key="assign_label" value="true"/>
        <parameter key="parallelize_executed_process" value="true"/>
        <process expanded="true">
          <operator activated="true" class="imageprocessing:global_feature_extraction" compatibility="1.4.001" expanded="true" height="60" name="Global Feature Extractor from a Single Image" width="90" x="179" y="30">
            <process expanded="true">
              <operator activated="true" class="imageprocessing:statistics" compatibility="1.4.001" expanded="true" height="60" name="Global statistics" width="90" x="179" y="30"/>
              <operator activated="true" class="imageprocessing:color_to_grayscale" compatibility="1.4.001" expanded="true" height="60" name="Color to grayscale" width="90" x="179" y="165"/>
              <operator activated="true" class="imageprocessing:obcf" compatibility="1.4.001" expanded="true" height="60" name="OBCF" width="90" x="380" y="165"/>
              <connect from_port="color image plus 1" to_op="Global statistics" to_port="color image plus"/>
              <connect from_port="color image plus 2" to_op="Color to grayscale" to_port="color image plus"/>
              <connect from_op="Global statistics" from_port="features" to_port="feature 1"/>
              <connect from_op="Color to grayscale" from_port="grayscale image" to_op="OBCF" to_port="grayscale image plus"/>
              <connect from_op="OBCF" from_port="features" to_port="feature 2"/>
              <portSpacing port="source_color image plus 1" spacing="0"/>
              <portSpacing port="source_color image plus 2" spacing="0"/>
              <portSpacing port="source_color image plus 3" spacing="0"/>
              <portSpacing port="sink_feature 1" spacing="0"/>
              <portSpacing port="sink_feature 2" spacing="0"/>
              <portSpacing port="sink_feature 3" spacing="0"/>
            </process>
          </operator>
          <connect from_port="color image plus" to_op="Global Feature Extractor from a Single Image" to_port="color image plus"/>
          <connect from_op="Global Feature Extractor from a Single Image" from_port="example set" to_port="Example set"/>
          <portSpacing port="source_color image plus" spacing="0"/>
          <portSpacing port="sink_Example set" spacing="0"/>
        </process>
      </operator>
      <operator activated="true" class="x_validation" compatibility="5.1.002" expanded="true" height="112" name="Validation" width="90" x="313" y="30">
        <description>A cross-validation evaluating a decision tree model.</description>
        <parameter key="parallelize_training" value="true"/>
        <parameter key="parallelize_testing" value="true"/>
        <process expanded="true">
          <operator activated="true" class="random_forest" compatibility="5.3.015" expanded="true" height="76" name="Random Forest" width="90" x="84" y="30">
            <parameter key="number_of_trees" value="20"/>
          </operator>
          <connect from_port="training" to_op="Random Forest" to_port="training set"/>
          <connect from_op="Random Forest" from_port="model" to_port="model"/>
          <portSpacing port="source_training" spacing="0"/>
          <portSpacing port="sink_model" spacing="0"/>
          <portSpacing port="sink_through 1" spacing="0"/>
        </process>
        <process expanded="true">
          <operator activated="true" class="apply_model" compatibility="5.3.015" expanded="true" height="76" name="Apply Model" width="90" x="45" y="30">
            <list key="application_parameters"/>
          </operator>
          <operator activated="true" class="performance" compatibility="5.3.015" expanded="true" height="76" name="Performance" width="90" x="179" y="30"/>
          <connect from_port="model" to_op="Apply Model" to_port="model"/>
          <connect from_port="test set" to_op="Apply Model" to_port="unlabelled data"/>
          <connect from_op="Apply Model" from_port="labelled data" to_op="Performance" to_port="labelled data"/>
          <connect from_op="Performance" from_port="performance" to_port="averagable 1"/>
          <portSpacing port="source_model" spacing="0"/>
          <portSpacing port="source_test set" spacing="0"/>
          <portSpacing port="source_through 1" spacing="0"/>
          <portSpacing port="sink_averagable 1" spacing="0"/>
          <portSpacing port="sink_averagable 2" spacing="0"/>
        </process>
      </operator>
      <connect from_op="MCIO" from_port="example set" to_op="Validation" to_port="training"/>
      <connect from_op="Validation" from_port="model" to_port="result 2"/>
      <connect from_op="Validation" from_port="averagable 1" to_port="result 1"/>
      <portSpacing port="source_input 1" spacing="0"/>
      <portSpacing port="sink_result 1" spacing="0"/>
      <portSpacing port="sink_result 2" spacing="0"/>
      <portSpacing port="sink_result 3" spacing="0"/>
    </process>
  </operator>
</process>


But I think it will struggle when I expand the number of objects and the real-world image data comes in with wide variations in background colour, perspective, illumination, etc.

Having read a little about object recognition and image processing, it would seem that more promising methods of feature extraction for this type of task are SIFT and SURF.

I can't find any Rapidminer operator for SIFT but the image mining extension has an operator called descriptor_surf, in the Feature Extraction--->Local Features

My problem is that when I run this operator all the output attributes V0 to V63 are Zero! This is the process:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<process version="5.3.015">
  <context>
    <input/>
    <output/>
    <macros/>
  </context>
  <operator activated="true" class="process" compatibility="5.3.015" expanded="true" name="Process">
    <parameter key="parallelize_main_process" value="true"/>
    <process expanded="true">
      <operator activated="true" class="imageprocessing:open_color_image" compatibility="1.4.001" expanded="true" height="60" name="Open Color Image" width="90" x="45" y="210">
        <parameter key="filename" value="D:\Rotationals\S002443\S002443_0003.png"/>
        <parameter key="set_mask" value="false"/>
        <parameter key="force_conversion" value="false"/>
      </operator>
      <operator activated="true" class="imageprocessing:color_to_grayscale" compatibility="1.4.001" expanded="true" height="60" name="Color to grayscale (2)" width="90" x="179" y="210"/>
      <operator activated="true" class="imageprocessing:descriptor_surf" compatibility="1.4.001" expanded="true" height="60" name="descriptor_surf" width="90" x="313" y="210"/>
      <connect from_op="Open Color Image" from_port="color image plus" to_op="Color to grayscale (2)" to_port="color image plus"/>
      <connect from_op="Color to grayscale (2)" from_port="grayscale image" to_op="descriptor_surf" to_port="image"/>
      <connect from_op="descriptor_surf" from_port="features" to_port="result 1"/>
      <portSpacing port="source_input 1" spacing="0"/>
      <portSpacing port="sink_result 1" spacing="0"/>
      <portSpacing port="sink_result 2" spacing="0"/>
    </process>
  </operator>
</process>

1) Am I correct in thinking that the descriptor_surf is the operator I need ?
2) Why are all the values zero, do I need to pre-process the images or do some other conversion before running it?

Thanks,

James



Logged
StaryVena
Full Member
***
Posts: 119


WWW
« Reply #1 on: December 06, 2013, 04:21:12 PM »

Hello James,
Quote
1) Am I correct in thinking that the descriptor_surf is the operator I need ?
There are several types of Interest Points detectors, you can combine them with Local features extractor with PoI. This could be one of approaches, but nobody knows if it will work unless you will try it.

Quote
2) Why are all the values zero, do I need to pre-processed the images or do some other conversion before running it?
It it wrongly implemented in this old version. It needs defined widow RoI with some scale, but I can't now find any operator which generates these windows.

Best,
Vaclav
Logged

Image processing extension developer.
jameshickman
Newbie
*
Posts: 2


« Reply #2 on: December 10, 2013, 11:40:47 AM »

Thanks, I have read a bit more in the are of image recognition understand that I need to extract the POI and then use a region descriptor to capture the features specific to those points.

In the SIFT approach the interest points are detected using the DoG (Difference of Gaussians) detector and the region descriptor is a histogram of gradients (HoG) or alternatively CCH (Contrast Context Histograms).

I can't find a DoG interest point detector but can identify POI's with the Harris or Hessian detectors.

I can extract local features, but none of the local feature extraction operators seem to correspond with HoG or CCH (Although there is a HoG Detector)

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<process version="5.3.015">
  <context>
    <input/>
    <output/>
    <macros/>
  </context>
  <operator activated="true" class="process" compatibility="5.3.015" expanded="true" name="Process">
    <parameter key="parallelize_main_process" value="true"/>
    <process expanded="true">
      <operator activated="true" class="imageprocessing:open_color_image" compatibility="1.4.001" expanded="true" height="60" name="Open Color Image" width="90" x="45" y="120">
        <parameter key="filename" value="D:\Rotationals\S001532\S001532_0005.png"/>
        <parameter key="set_mask" value="false"/>
        <parameter key="force_conversion" value="false"/>
      </operator>
      <operator activated="true" class="multiply" compatibility="5.3.015" expanded="true" height="94" name="Multiply (2)" width="90" x="45" y="300"/>
      <operator activated="true" class="imageprocessing:color_to_grayscale" compatibility="1.4.001" expanded="true" height="60" name="Color to grayscale" width="90" x="179" y="210"/>
      <operator activated="true" class="multiply" compatibility="5.3.015" expanded="true" height="76" name="Multiply" width="90" x="380" y="255"/>
      <operator activated="true" class="imageprocessing:interest_point_detector" compatibility="1.4.001" expanded="true" height="60" name="Interest point detector" width="90" x="246" y="30">
        <parameter key="num_of_features" value="100"/>
      </operator>
      <operator activated="true" class="imageprocessing:feature_extraction_operator2" compatibility="1.4.001" expanded="true" height="94" name="Local Feature Extractor with Points" width="90" x="581" y="120">
        <parameter key="parallelize_executed_process" value="true"/>
        <process expanded="true">
          <operator activated="true" class="imageprocessing:color_to_grayscale" compatibility="1.4.001" expanded="true" height="60" name="Color to grayscale (2)" width="90" x="45" y="30"/>
          <operator activated="true" class="multiply" compatibility="5.3.015" expanded="true" height="148" name="Multiply (3)" width="90" x="246" y="30"/>
          <operator activated="true" class="imageprocessing:line_haar_like_feature" compatibility="1.4.001" expanded="true" height="60" name="Line Haar-like feature" width="90" x="447" y="210"/>
          <operator activated="true" class="imageprocessing:circle_pixels_extractor" compatibility="1.4.001" expanded="true" height="60" name="CPE" width="90" x="447" y="120"/>
          <operator activated="true" class="imageprocessing:diagonal_haar_like_feature" compatibility="1.4.001" expanded="true" height="60" name="Diagonal Haar-like feature" width="90" x="447" y="165"/>
          <operator activated="true" class="imageprocessing:bvlc" compatibility="1.4.001" expanded="true" height="60" name="BVLC" width="90" x="447" y="75"/>
          <operator activated="true" class="imageprocessing:contrast_of_gray_level_values" compatibility="1.4.001" expanded="true" height="60" name="contrast_of_gray_level_values" width="90" x="447" y="30"/>
          <connect from_port="image 1" to_op="Color to grayscale (2)" to_port="color image plus"/>
          <connect from_op="Color to grayscale (2)" from_port="grayscale image" to_op="Multiply (3)" to_port="input"/>
          <connect from_op="Multiply (3)" from_port="output 1" to_op="contrast_of_gray_level_values" to_port="grayscale image plus"/>
          <connect from_op="Multiply (3)" from_port="output 2" to_op="BVLC" to_port="grayscale image plus"/>
          <connect from_op="Multiply (3)" from_port="output 3" to_op="Diagonal Haar-like feature" to_port="grayscale image plus"/>
          <connect from_op="Multiply (3)" from_port="output 4" to_op="CPE" to_port="grayscale image plus"/>
          <connect from_op="Multiply (3)" from_port="output 5" to_op="Line Haar-like feature" to_port="grayscale image plus"/>
          <connect from_op="Line Haar-like feature" from_port="feature" to_port="feature 5"/>
          <connect from_op="CPE" from_port="feature" to_port="feature 4"/>
          <connect from_op="Diagonal Haar-like feature" from_port="feature" to_port="feature 3"/>
          <connect from_op="BVLC" from_port="feature" to_port="feature 2"/>
          <connect from_op="contrast_of_gray_level_values" from_port="feature" to_port="feature 1"/>
          <portSpacing port="source_image 1" spacing="0"/>
          <portSpacing port="source_image 2" spacing="0"/>
          <portSpacing port="sink_feature 1" spacing="0"/>
          <portSpacing port="sink_feature 2" spacing="0"/>
          <portSpacing port="sink_feature 3" spacing="0"/>
          <portSpacing port="sink_feature 4" spacing="0"/>
          <portSpacing port="sink_feature 5" spacing="0"/>
          <portSpacing port="sink_feature 6" spacing="0"/>
        </process>
      </operator>
      <connect from_op="Open Color Image" from_port="color image plus" to_op="Multiply (2)" to_port="input"/>
      <connect from_op="Multiply (2)" from_port="output 1" to_op="Color to grayscale" to_port="color image plus"/>
      <connect from_op="Multiply (2)" from_port="output 2" to_op="Local Feature Extractor with Points" to_port="color image plus"/>
      <connect from_op="Color to grayscale" from_port="grayscale image" to_op="Multiply" to_port="input"/>
      <connect from_op="Multiply" from_port="output 1" to_op="Interest point detector" to_port="image"/>
      <connect from_op="Interest point detector" from_port="poi" to_op="Local Feature Extractor with Points" to_port="points"/>
      <connect from_op="Local Feature Extractor with Points" from_port="example set" to_port="result 1"/>
      <portSpacing port="source_input 1" spacing="0"/>
      <portSpacing port="sink_result 1" spacing="0"/>
      <portSpacing port="sink_result 2" spacing="0"/>
    </process>
  </operator>
</process>

1) What is the operator equivalent of HoG in local feature extraction ?
2) What is the operator equivalent of CCH in local feature extraction
3) If neither exist what would be the best choice to for a SIFT like approach ?
4) Does the HoG detector operator work on the whole image or does it extract POI as part of its process (If so, using what algortihm)?

Thanks for your help,

James
Logged
Pages: [1]
  Print  
 
Jump to: